Mathematics (Code-041) Term - 2 SET NO. - 2 / 2022 CHOUDHARY'S Sample Question Paper CLASS: XII

Session: 2021-22
Time Allowed : 2 hours
Maximum Marks: 40

General Instructions:

1.This question paper contains three sections - A, B and C. Each part is compulsory.
2.Section - A has 6 short answer type (SA1) questions of 2 marks each.
3.Section - B has 4 short answer type (SA2) questions of 3 marks each.
4. Section - C has 4 long answer type questions (LA) of 4 marks each.
5. There is an internal choice in some of the questions.
6. Q14 is a case-based problem having 2 sub parts of 2 marks each.

SECTION -A		
1.	Evaluate: $\int\left(\frac{\cos x}{1-\sin x)(2-\sin x)}\right.$ dx.	$\mathbf{2}$
2.	Solve the differential equation: $x^{2} \frac{d y}{d x}=x^{2}+x y+y^{2}$.	$\mathbf{2}$
3.	If $\vec{a}=\hat{\imath}+\hat{\jmath}+\hat{k}$ and $\vec{b}=2 \hat{\imath}-\hat{\jmath}+3 \hat{k}$ and $\vec{c}=\hat{\imath}-2 \hat{\jmath}+\hat{k}$, find a unit vector parallel to the vector $2 \vec{a}-\vec{b}+3 \vec{c}$. Find λ, where projection of $\vec{a}=\lambda \hat{\imath}+\hat{\jmath}+4 \hat{k}$ on $\vec{b}=2 \hat{\imath}+6 \hat{\jmath}+3 \hat{k}$ is 4 unit.	$\mathbf{2}$
4.	Write the vector equations of a line passing through the point $(1,-1,2)$ and paratlel to the line $\frac{x-3}{1}=\frac{y-1}{2}=\frac{z+1}{-2}$.	$\mathbf{2}$
5.	In a college, 30% students fail in Physics, 25% fail in Mathematics and 10% fail in both. One student is chosen at random. Find the probability that she fails in Physics if she has failed in Mathematics.	$\mathbf{2}$

6.	If $\mathrm{P}(\mathrm{A})=\frac{2}{5}, \mathrm{P}(\mathrm{B})=\frac{3}{10}$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{5}$, then find the value of $P\left(A^{\prime} \mid B^{\prime}\right)$.	2
SECTION - B		
7.	Evaluate: $\int \sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} \mathrm{dx}$. OR Evaluate $\int\left(\frac{x^{2}+9}{x^{4}-2 x^{2}+81} d x\right.$.	3
8.	Find a unit vector perpendicular to each one of the vectors $\vec{a}=$ $4 \hat{\imath}-\hat{\jmath}+3 \hat{k}$ and $\vec{b}=2 \hat{\imath}+\widehat{2}-\hat{k}$.	
9.	Solve the differential equation: $\cos x \cdot \frac{d y}{d x}+\mathrm{y}=\sin \mathrm{x}$	3
10.	Find the equation of the plane passing through the points $(2,3,4),(5,6,7)$ and $(1,0,0)$ OR Find the shortest distance between the lines: $\begin{aligned} & \vec{r}=\hat{\imath}+\hat{\jmath}+\lambda(2 \hat{\imath}-\hat{\jmath}+\hat{k}) \text { and } \\ & \vec{r}=2 \hat{\imath}+\hat{\jmath}-\hat{k}+\mu(3 \hat{\imath}-5 \hat{\jmath}+2 \hat{k}) . \end{aligned}$	3
	SECTION - C	
11.	Evaluate: $\int_{-1}^{1} \frac{x^{3}+\|x\|+1}{x^{2}+2\|x\|+1} \mathrm{dx}$.	4
	Find the area of the region $\left[(x, y): x^{2} \leq y \leq\|x\|\right]$. OR Find the area of the region bounded by the line $y=3 x+2$, the x-axis and the ordinates $x=-1$ and $x=1$.	4
13.	Find the foot of the perpendicular drawn from the point $(-1,3,-6)$ to the plane $2 x+y-2 z+5=0$. Also find the equation and length of the perpendicular.	4

14.	CASE STUDY BASED/ DATA- BASED In an office three employees Rajarshi, Tamanna and Ashlesha process incoming copies of a certain form. Rajarshi process 50% of the forms, Tamanna processes 20\% and Ashlesha the remaining 30% of the forms. Rajarshi has an error rate of 0.06, Tamanna has an error rate of 0.04 and Ashlesha has an error rate of 0.03 . Based on the above information answer the following:	
	i) Find the total probability of committing an error in processing the form.	2
	ii) The manager of the company wants to do a quality check. During inspection he selects a form at random from the days output of processed forms. If the form selected at random has an error, find the probability that the form is NOT processed by Rajarshi.	2

